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Summary

~ ~~The Fiu t Techni~ct Rep°ot contai ned a detail1ed simul ation study about the

possible accuracy of o_.5, onomic position-ing in the field. Namely we refer

to Chapter Three, especially to Figu e, 2-29. The simulation study was .#

based on the assumption that the objects of field observations, the stars, -
are perfectly known, including also the various astronomic reductions such i

as proper motion, aberration Daralla× etc. Here We, thcrefore, allnw

~some uncertainty of t~e star position: Wepresent..a detailed analysis of

~how to proceed once only di,petie ptilot iyto~utilon about star positions

-1-

is available. The nonlinear condition equations are linearized by a two-estep Taylor series expansion accounting for stochastic information of

right ascension and declination, the parameters of star positions. A nu-

merical analysis will be presented in the Fpna Repoteta a y of
r a o d ai A n
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0. Introduction

Within the FiAL5t TechniicaZ Repokt (March 1987) we have characterized astro-

nomic positioning as the determination of the direction parameters of the

gravity vector, namely of "toonomica longitude A and asvonomico oa tZ-

tude P, relative to an earth-fixed reference frame. According to the ob-

servational technique. of stellar objects by means of a theodolite, an

additional quantity, the oteutation unknown Z in the hotizonoae ptane

has to be determined. Within a Gau3-Heimekt model of condition equations

with unknowns we simulated various observational configurations in order

to get an accuracy estimate of the field operations by which astronomical

longitude A, latitude D and the orientation unknown E are determined.

Namely we refer to Chapter Three of the FDtt Techitzcae Report (March 1987), %

especially to Figue.. 2-29. The accuracy of the observations had been as-

sumed as follows: The r.m.s. value for the hotizontai_ ditect-ion was sta-

ted as aT = 1", for the vevtic dection aB  1" and for time measue-

ment a, Z 0.1 sec.

The simulation study was performed under the restriction that the respective

star positions are given pvtecly. In reality, the star positions, namely

right ascension a and declination 6, have to be characterized by a variance-

covariance matrix. Its influence on astronomic positioning is analyzed here-

in. We derive observational equations in which the uncertainty of the star

position is represented. Only through such a general model can the accuracy.,

of ac5t'onomic pos6ticnig in the &Zeed he realisticallly estimated.
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20 ,,,

Z#S



-3-

1. Relations between the reference frames in geodetic astronomy

First of all in this chapter the fundamental relations in geodetic astronomy

between observations, unknowns and given coordinates shall be derived which

will be needed further.

1.1 The systematical structure of the reference frames

The reference frames used in geodetic astronomy may be arranged on different
levels which are numbered in turn or indicated by symbols: 0 corresponds to ',

1 to *, 2 to *, 3 to o. One fundamental vector Vi belongs to every level i.

In details this is as follows:

V0 = V' = Z the position vector from the point of observation to

the target object (terrestrial or celestial), which is
generally a star;

V1 = V* = -F the negative gravity vector;

V2 =V the earth rotation vector (it has the direction of theV =-.V

axis of the earth, points to the North Pole and has the
value of the earth rotation rate);

3V V = the ecliptic normal vector (it points to the northern
pole of the ecliptic).

An orthonormal reference frame El belongs to every level with its base vectors

as follows:

%
E 3 norm Vi  (1-I)

E = norm (v xVl ) (1-2)
-2-

E El x E (1-3)
1 -2 -~3

Here "norm" denotes the abbreviation for the normalization of a vector, and "x"

the vector product.

New reference frames are at the lower end the observational frame E' of the level

0
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"0", whose third base vector is located in the direction of the observation and i.,

which is unique since it is not a reference frame in the literal sense, because :"

there are no vectors described with regard to this frame, and at the upper end

the ecliptic frame E0 , which has hardly any practical importanLe. i'

In addition to the systematical E-triads, F-triads also appear on each level.

These systems have the common third base vector with the appertaining E-frame,

nevertheless the direction of the first and second base vector does not follow

from the systematic structure of the fundamental vectors V , V , but from a

more or less arbitrary definition.

A new F-triad is the theodolite frame F*, whose first base vector F * lies in

the direction "zero" of the azimuth circle of a theodolite which is set up in

the astronomical horizon. The longitudinal angle (see below) of an observed

direction in the local horizon frame is the horizontal direction T and is re-

corded systematically in the clockwise direction, but conventionally counteA-

S C
clockwise, T = -T . The latitude angle (see below) is the vertical direction "

as in the horizon frame E*.

The transformation from a frame Ei to the appertaining frame F ± is always a

counter-clockwise rotation round the common third axis with the orientation

angle H-,

F :R 3(H')E. (1-4)

is the rotation matrix, which describes a rotation of a frame round the30
third axis. It is

cosy sin 0

R(Y) = -siny cosY 0 (1-5)

L 0 0 J

Corresponding to eqn. (1-5) the rotation matrices for the rotations round the S

first and second axis read
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F 0
R (a) 0 cosa sina (1-6)

L 0 -sinot cosa,

cos; 0 -sine -. 3

2 ) 0 1 0 (1-7)

sin 0 cosB

R1  R2 and R3 are also called elementary rotations. The orientation angles Hi

(see eqn. (1-4)) are in detail:

H1 = H* = the orientation unknown of the theodolite which has
been set up;

2 H r

H = H = Grs the Greenwich sidereal time;

H3 = H0  the angle between the line of intersection of the eclip-
tic with the mean galaxy plane and the direction to the
vernal equinox ±900 .

For the transformation from a frame Ei+1 to the underlying frame El one needsi i ofth fndmeta "%-

the longitudinal angle X-1 and the latitude angle (D" of the fndamental
Si1i+1vector Vi with regard to the frame E

+ 14. 1 1+.1

-2 i+: -3 ) i + 1  E i+1, i+ 1

R (- +1 + )E _+1
-E i+ j+1_

RE is the special case of a rotation matrix of Eulerian type, in which the three

elementary rotations are connected in a row as follows:

- first rotation round the third axis, R w e0 ) °

- second rotation round the new second axis with the angle (900-6),R (9oo-B)
-2

- thirdi rntatinn rnn f2
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a-, --w.

In the matrix R the second rotation round the second axis would take place
-e

with the angle ,R ()
20

These longitudinal and latitude angles are in detail: I,4 .

0 '* A the azimuth of the observational direction;
S

Do the vertical direction

1 *,'

=2 a the sidereal time •

1 = the astronomical latitude. 
4. .*

i+1-

For the transformation from a frame E to the frame F' lying diagonally under-

neath, one needs additionally the orientation angle Hi(see Fig. 1):

F1 = R E 5 i ,H')E'+1  (1-9)
i :E R i+1' i+1 

•-

For the transformation from a frame Fi + l to the frame E i lying diagonally under-

neath, one needs the longitudinal angle ii and the latitude angle 1P of the

fundamental vector V1 with regard to the frame F i  : S: .

P.-

El )Fi+ 1 (1-10)
El R i + I ' i + 1 

"; .

The latitude angles are the same as above, the longitudinal angles are in de-

tail:

A0 = A' = T the horizontal direction of the observation direction,
s systematically measured counter-clockwise, conventionally

in the clockwise direction, T =-T 4~

A = A* = A the astronomical longitude;
2 .

2 = A' = 90 °  0
A3  o A Q

and

2 =90-L the orthogonal complement to the inclination of the3 0 ecliptic.

,.%

-i . ,.. . - . -- , , ra m iN i in mai , , i m-4 i m
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l evel 5

E4 level 4, mean galaxy frame
'--5./....

'5

E F level 3 (o), ecliptical frame

% (900,C)

~. N-

E ' -R3( Grs) r Ir
E -3 Gs F level 2 (0), equatorial frame (fixed in

space, fixed in the earth)

S0_F e ,D) RE (A '.) ,
B ( A6

-E

E* F* level 1 (') horizontal and theodolite ,
frame N

RE (As B) Ts,B) -'

- - s ... ,:,

El

Ell

Fig . I :Commutative diagram with reference frames in geodetic astronomy
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For the transformation from a frame F£+  to the underlying frame F, one

needs additionally the orientation angle Hl: S

F£  (E + ,+1' (1-11).

The transformation in the opposite direction results from the respective trans- S

posed of the rotation matrix.

1.2 The commutative diagram and the fundamental equation of geodetic astronomy 0

In the rotations introduced up to this point the right ascension ct and the de-

clination 6 are still missing; these describe the observation direction E

to a star with regard to the space fixed equator frame, namely in the same way

as A and B do this with regard to the horizontal frame. Indeed, the rotation

RE(Q,6)E" does not lead to the frame E'; in E"= R (a,6)E" the second oase vec-

tor E lies in the equatorial plane, but in E' the vector E lies in the hori-

zontal plane (east). Of course E' and E have the common third base vector,

but they differ by a rotation round this vector with an angle 1 4%

P = R3(t)E' (1-12)

3S

A serial connection of several transformations is called a diagram in the alge-

bra. If the transformations which have to be reversibly unequivocal, form a

closed circle, this is called a commutative diagram. Then one is able to express

a transformation by means of the others. Such a commutative diagram is presen-

ted in Fig. 1 by the lines which are thickly marked. For example the trans-

formation E* + E' can be expressed by

P _R(T,B)R (Z)E* (1-13) "

- -t. -3.

or

T T T
E 3(C)R E(a,6)R ( 0G )R E(A ,~E* .(1-14) -

As the representation of the triad E' with regard to the triad E* is unequi-

vocal, it follows that:

%*,A%
./,.
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-3Z=3 ~,) (Gr )RE(A,4) (1-15)

This equation reads with the right-hand side written in full length

BE(T,B3 R ) 3(=-)R2 (900-6) 3(a) R 3(-0 Gr R3(-A)R 2(D-90) (1-16)

and can again be reduced to

% ... "
R ( T + , ) = R ' ,

-E -e -E Gr

These are the desired 6ukidwamne& ettvn between the parameters appearing

in geodetic astronomy.

S
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2. The observation equations of geodetic astronomy •

The fundamental equation (1-17) consistsc as a matrix equation of nine sepa- i--

rate equations, of which only three are independent of each other because of

the property of orthonormality of the rotation matrices. These three inde- S

pendent equations represent conditon equationz with unknowns for every star

(if T,B and 0 are measured at one instant).

The matrices on the left and right-hand side of equation (1-17) read as foi-

lows when they are multiplied respectively:

cos(L+T)sinB sin(Z+T)sinB -cosB %

-sin(Z+T) cos(Z+T) 0

cos(Z+T)cosB sin(E+T)cosB sinB

and 0

Column 1:

K_nmcos(e +A-u)sin6cos-sin¢sin(6 G+A-)sin+cosCos6cosj
Gr+ Gr'

sincos(eG +A-a)sin sin+sin4sin(6G +A-ca)cos +cos ,cos s5in.

sin~cos(oG +A-ccos -cos .sin.
. ,

Column 2:

-s i n( G+A-a)sin6cosSC.-cos(OG +A-c) sin.

-sin(6G +A-)sinosin~rcos(I-G +A-4 4tcos,.:S

-sin(eG +A-Q)cos6

Column 3: -i
cosVcos(0G+A-a)sin6cosIr-cos.,sin( G +A-")sin--sincoscos

cos¢cos(e GA +A) s i n s i n +cs+ s i nV( r +A-z) coS- s i n cos s i n -,
G, ,-G r

cos(cos( Gr + A- a co s 6+ s in s in 6--"
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In the right-hand matrix the elements in the third row are the shortest and at '

the same time the only ones which do not contain the angle C. Therefore, it

is the obvious thing to do to select two equations from this row as indepen- % F

dent equations. As a third equation one could take an element from another

row of the matrices whereby the angle in which one is not actually in-

terested, would indeed appear as an additional unknown. So one, therefore,

dispenses with such an equation and there remain only two independent equa- ,--

tions for one complete observation (T,B and eGr) with the three unknowns A,

sinB = COS, COS(aG +A-a)cos6+sin,'1sin6 ( 2-1 )-, -

sin(.7+T)cosB = -sin(0Gr+A-(u)COS6 (2-2) i

cos(E+T)cosB = sincos(eG +A-,a)cos -cos(sin6 (2-3)

Equations (2-1) and (2-2) are independent of each other, equation (2-3) is

dependent on them both. It will be used later only for the determination of

approximate values. The appearing variables be summarized once more:

A astronomical longitude

astronomical latitude

CX right ascension of the star

declination of the star 0

h 0  + A - a hour angleiGr
Z orientation unknown of the instrument (theodolite)

T horizontal direction; observed

=A = I + T azimuth .

B = 90' - z vertical direction, angle between horizon and star; observed

' Gr Greenwich apparent sidereal time; observed

1%!,S



2.1 Linearization and matrix representation

The equations (2-1) and (2-2) are linearized by Taylor series where w~e build

in pot.L 5toch"- tiLc ikh~o~uat~on of the star positions cc, 6.

l Observations: d

The horizontal direction T, the vertical direction B and the coordinate clock .. I
time T are obserwvd. In order to derive linearized condition equations from ~

(2-1) and (2-2) horizontal and vertical directions are decomposed into

T -,+ t , B =  .+ Ab (2-4) - -

The coordinate clock time T has to be related to the Greenwich apparent 'i
sidereal time angle 6 Gri e.g. by the series !"~

• 2
@G ( = 8G (T ° + 6 (T °)X - T °) + °2[(T T ° (2-5 ) ' I

=r Gor( 0 Gr 0 0Gr( o

, @Gr ~may be identified with the earth rotation speed 0 ".. I;' l

Condi t ion equat ion

"'p

IA o~z:i FIE{Y}, X1 ,  X 2] 0 (2 7) ..

The nonlinear vectorial condition equation F[EfY}, XI, X] contains the ob- "

servation vector Y, (stochastiLc according to the theory of measurements), -
the ixed unknown vector XI , but with ispepsive s5tochcutic pkioor t'notuatioiz

being available, and the ixed unknown vector with any stochastic prior in- -r '

formati on. ,- e

71st Taylor-series I"''

At a 6ix ed poinit y, x1 x2 of approximation we are linearizing the system ,.
of nonlinear condition equations (2-7). ,

F[E{Yj, X1 . X 2 ]  F(y,xl,x 2 )  + F' (YXlX 2 )  [E{Y} - y] (2-8)

T Fx (YXt ,-)(Xions + aY,X lX2( rrx 2d + 0

02 indicates the neglected terms of higher order.

time t areIIbII ved. In re odrv Il I I l ierzdcdtonquinsfm
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12nd Taylor series

At a toch6t.c po 'it y, x of approximation we are linearizing the system

of nonlinear condition equations (2-7).

F(y,X1,X2) F(y,xl,x 2 ) + F (Yxl,X2(y-y) + (2-9) ,

+ F' (YXlX2)(Xl-X) + 02

1

(2-81 )

(2-9)

F[E{Y},XI,X 2] - F(y,xl,x 2 ) = F'(yxlx 2 )[E{Y} - y1
(2-10)

+ F' (y,x1,x )Xx,)+ f ' -
Sxl l2 1 x2(Yx 1,x2 )( 2 x2

Now we have been led to a system of &neovuzed condit Ln equatioi where

Y- y =: y and X- x x1 are stochlz6tic co.AectZoa vectors while

X - x 2 
= : A x2 contains the fixed or ncoi-6tochastic covtectZoti vecto. The S

next step is to write down the obsevtvatcona equation for y and the pseudo- v.

obepvatioki equation for , the vector of stochastic information.

2
E{Y} , D{Y} = Q , rk Q =n

'jjb fX1  2 (2-11)

Here the pseudo-observat. ona equatioii is generated by prior informative data

of the 6tWzi posZition, parameterized by {l,6}, namely by

ciici]b i-'
Xl . [ , ]T (2-12) '-.

sinB = sin(b+Ab) "sinb + Ab cosb %I, %

CO( O(P+6(D) "-coso  6(D sin¢ •

cos(O rA-oL) Co(= cO~ rAo-a+68 r+A-6^c) -
T o 0(2-14)

s o SeGr+Ao0) in Gr+ A- c)sin( o Gr+Ao-0

cos6 = cos(6+66) " cos4 - 6 sin % •

sino = sin( 0+6D) sin 0 + 6D cost o0
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(2-1), (2-2), (2-14) >

sinb + cosb Ab cOsoCos( o8Gr+Ao -&)cos6 + sin4 ° sinZ - (2-15)

-cos ° sin( OG+Ao -a)(60 +6A)
0 o 0 Gr+

+ [-sin o cos( oeGr+Ao-) + cos ° sinZ] 6(D

+ COS0 sin( 8e +A -&) 6 + K.,

+ sinc (COS6) 66 ; '"
0, '

sin(z 0 +t) cosb + cos( 0+t) cosb(6E+At) - (2-16)

-sin(Z +t) sinb Ab =

-sin(o6Gr+Ao -) coS6 - cos( oeGr+A -&) cos6(6eGr+6A)

+cos( oGr+Ao-c)c + sin( oeGr+Ao-)(sin6) 6-6

In extension of the linearized condition equations (2-4), (2-5), respectively ,-

being introduced in the FZitt Techn cZe Repot , page 13, here we are led to , 9.

the additional terms proportional 60L, 66, respectively. They account for the

unce'tati, o4} the staA po.6Uion. Once we assume zero F(Y,XI,X 2 ) - _

F(Y, lX2) =0, a result which can be achieved by a proper gauging of the

approximate values, we finally introduce the linearized equations

-cosb 6b - cos 0 sin( oGr+A 0 a)(6Gr+6A) + I

+ [-sin o cos( o 4rA -) + coso sin ] 6D + (2-17)
0 o Gr o- o

+ cos(osin( 6 +Ao-c)6 + sinD (COS6) 66 = 0
0 o Gr o o

-cos(Z 0 +t) cosb(6Z+At) + sin(o +i) sinG Ab -

-cOS(oeGr+Ao -a) cos 6 (6eGr+6A) + (2-18)

+cos( o Gr+A -&) 6^6 + sin( oaGr+A -&)(sin6) C6 0

From these equations we obtain the proper condition equations with respect to

the estimation / prediction problem when we introduce the vectot' o4 incon-

iAstency, e and e , respectively.__ _ _ xI ,_ _

Y E{Y} + ey R E{lI + e 1  (2-19)

FIAy X F' AX 2+F Ax2 - Y = 0 (2-20)
y 2 y

F'Ay + Fx' b + Fx2Ax2 - F' e - F'e Y 0 (2-21)

1 x . 1 x 2 x2 x 1 x 1 yy



A b + A Ax + BAY A e + Be (2-22) MIR

A1, A2 and B are the coefficient matrices for all observations taken to various

stars. The structure of the coefficient matrices can be read from the two

equations (2-17) and (2-18). Note that not only A, D, Z or 6A, 61, 6Z are 0
unknowns, but as well Ia, 6 or 6a, 66, the corrections to star positions.

Their uncertainty will play an essential part in the final computation of the

variance-covariance matrix of A, (P, Z!

In order to solve the linearized mixed model condition equations (2-22) we

apply the gene>'toLazed method o4 teost-squovt e

L{e ,e ,AX2,A} Al•
y x 1

[e~A~ e + [AI1} +1 0 V 1 I
- l. j Lm

A b + A2 Ax2 + BAy - Ale - Bey
1 y(2-23)

Q+IT AI

1 T TTe

[ey,el LA T  I m+VI e

+X(Ab + AAx2 + BAy -Ae Be) = min.
1 1A2l2 xl Y (e e Ax

x X 2, )

0
The normal equations and their solution will be given in the Finog Repot.

There an extension of the results, F't- Technica, Repot, pages 20-29,

will be presented.


